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Abstract To estimate the fault dimension of an earthquake in real time, we present
a methodology to classify seismic records into near-source or far-source records.
Characteristics of ground motion, such as peak ground acceleration, have a strong
correlation with the distance from a fault rupture for large earthquakes. This study
analyzes peak ground motions and finds the function that best classifies near-source
and far-source records based on these parameters. We perform (1) Fisher’s linear
discriminant analysis and two different Bayesian methods to find the coefficients
of the linear discriminant function and (2) Bayesian model class selection to find
the best combination of the peak ground-motion parameters. Bayesian model class
selection shows that the combination of vertical acceleration and horizontal velocity
produces the best performance for the classification. The linear discriminant function
produced by the three methods classifies near-source and far-source data, and in ad-
dition, the Bayesian methods give the probability for a station to be near-source, based
on the ground-motion measurements. This discriminant function is useful to estimate
the fault rupture dimension in real time, especially for large earthquakes.

Introduction

Recent studies show that earthquake early warning sys-
tems, such as the virtual seismologist (VS) method (Cua,
2005), can accurately estimate the location of the epicenter
a few seconds after the first arrival station records the ground
motion of the mainshock (Nakamura, 1988; Allen and Ka-
namori, 2003; Odaka et al., 2003; Wu and Kanamori, 2005).
The VS method assumes a point source model for the rup-
ture, and it works well for small to moderate earthquakes
(Mw <6:5) (Cua, 2005). However, for large earthquakes,
the fault rupture length can be on the order of tens to hun-
dreds of kilometers, and the prediction of ground motion at a
site requires approximated knowledge of the rupture geome-
try. Early warning information based on a point source model
may underestimate the ground otion at a site, if a station is
close to the fault and distant from the epicenter. This occurs
because, for large earthquakes, the peak characteristics of
ground motion, such as peak ground acceleration, have
stronger correlation with the fault rupture distance rather than
with the epicentral or hypocentral distance (Campbell,
1981). (The definition of the fault rupture distance in this
article is the shortest distance between the station and the
surface projection of the fault rupture surface.)

In order to construct an early warning system that is
more reliable for large earthquakes, it is necessary to estimate
the fault rupture extent and slip on the fault in real time. The
objective of this article is to develop a methodology to clas-
sify stations into near source and far source because this

can be used for identifying the fault geometry if there is a
sufficiently dense seismic network. Peak ground motions re-
corded in past earthquakes are analyzed to predict whether a
station recording ground motion is close to the earthquake
fault area. This classification problem can be stated as fol-
lows: given ground-motion data from past earthquake re-
cords, what is the probability that a station is near source
when a new observation is obtained?

To approach this problem, we take the following steps:

1. We collect strong-motion data from earthquake strong-
motion archives and classify these samples into two pre-
defined groups: records from near-source stations and
from far-source stations. This particular set of data is
called the training set.

2. We discover a discriminant function of the samples fea-
tures (e.g., peak ground acceleration [PGA], peak ground
velocity [PGV], peak ground displacement [PGD]) that
provides the best performance in terms of near-source/
far-source classification.

3. We allocate new observations, when they are obtained, to
one of the two groups based on the discriminant function.

The first step is quite straightforward: strong-motion
data from past earthquakes are collected based on certain se-
lection criteria. The second step is the main topic of this ar-
ticle, and we investigate linear discriminant functions by
using the traditional Fisher method and two Bayesian meth-
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ods. The third step can then be accomplished in a real-time
analysis. Given a new ground-motion observation from on-
going rupture, the discriminant function gives the probability
that the observation is located in the near source.

Strong-Motion Data

We used strong-motion datasets from nine earthquakes
with magnitudes greater than 6.0 and containing records of
near-source stations. The selected earthquake dataset is
shown in Table 1. Here, we define a near-source station
as a station whose fault rupture distance is less than
10 km. 695 three-component strong-motion data are used
for the classification analysis, and 14% (100 stations) are
from near-source stations.

Data Sources

We obtained the strong-motion dataset for the Imperial
Valley (15 October 1979), Loma Prieta (18 October 1989),
Landers (28 June 1992), Northridge (17 January 1994), and
Denali (3 November 2002) earthquakes from the COSMOS
Virtual Data Center (http://db.cosmos‑eq.org), which in-
cludes data from the California Strong Motion Instrumenta-
tion Program seismic network and the U.S. Geological
Survey seismic network. The Northridge earthquake dataset
in the COSMOS Virtual Data Center also includes records
from seismic networks of the California Institute of Technol-
ogy, Los Angeles Department of Water and Power, Metro-
politan Water District, Southern California Earthquake
Center, and University of Southern California. All these data
were recorded by accelerometers and processed appropri-
ately before distribution to users. The correction process
may apply baseline corrections, band-pass filters to remove
noise contamination, and instrument correction to remove
the effects of frequency-dependent instrument response
(http://nsmp.wr.usgs.gov/processing.html).

Strong-motion data from the Hyogoken-nanbu earth-
quake (16 January 1995) are provided by the Japan Meteor-
ological Agency, the Committee of Earthquake Observation

and Research in the Kansai Area (CEORKA) in Japan (Toki
et al., 1995), and the Japan Railway Institute, whose records
were scanned and digitized by Wald (1996). Seismometers
installed in the CEORKA network record velocity, and those
records are differentiated once to obtain accelerograms.

The national strong-motion accelerograph network in
Turkey recorded the strong motions during the Izmit earth-
quake (17 August 1999) (Akkar and Gülkan, 2002). They
can be downloaded from the ftp site of the Earthquake
Research Department of General Directorate of Disaster
Affairs, Ministry of Public Works and Settlement, Ankara,
Turkey (ftp://angora.deprem.gov.tr/). The COSMOS Virtual
Data Center archived the dataset of another network operated
by the Kandilli Observatory and Earthquake Research Insti-
tute, Earthquake Engineering Department, Bogaziçi Univer-
sity, Istanbul, Turkey. Stations with fault distance greater
than 200 km are excluded because ground-motion ampli-
tudes of those stations are quite small, which results in a
low signal-to-noise ratio. We use four digital and six analog
acceleration records from the national network and eight
digital acceleration records from the Bogaziçi University
network.

The Chi-Chi earthquake (20 September 1999) is one of
the best recorded earthquakes with a large number of stations
and a dense station distribution both in the near source and
far source. Strong-motion records for the Chi-Chi earthquake
are available on the attached CD in the Special Issue of the
Bulletin of the Seismological Society of America, volume 93,
number 5 (Lee et al., 2001). These records were produced by
the Central Weather Bureau Seismic Network, and they are
the largest set of strong-motion data recorded from a major
earthquake (Shin and Teng, 2001). Lee et al. (2001) classi-
fied the recorded accelerograms into four quality groups
based on the existence of absolute timing, preevents, and de-
fects. For this analysis, QA-class data (best for any studies)
and QB-class data (next best but no absolute timing)
are used.

Strong-motion data from the Niigataken-chuetsu earth-
quake (23 October 2004) were recorded by the K-NET and

Table 1
The Earthquake Dataset Used for the Classification Analysis

Earthquake Mw Near Source Far Source Total Fault Model

Imperial Valley (1979) 6.5 14 20 34 Hartzell and Heaton, 1983
Loma Prieta (1989) 6.9 8 39 47 Wald et al., 1991
Landers (1992) 7.3 1 112 113 Wald and Heaton, 1994
Northridge (1994) 6.6 17 138 155 Wald et al., 1996
Hyogoken-Nanbu (1995) 6.9 4 14 18 Wald, 1996
Izmit (1999) 7.6 4 13 17 Sekiguchi and Iwata, 2002
Chi-Chi (1999) 7.6 42 172 214 Ji et al., 2003
Denali (2002) 7.8 1 29 30 Tsuboi et al., 2003
Niigataken-Chuetsu (2004) 6.6 9 58 67 Honda et al., 2005

Total 147 623 770

Moment magnitude (Mw) is cited from the Harvard Centroid Moment Tensor solution. The numbers of
near-source and far-source data for each earthquake are also shown. The fault models are used as
selection criteria to classify near-source and far-source stations.
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KiK-net seismic networks operated by the National Research
Institute for Earth Science and Disaster Prevention in Japan.
Those data are available at their websites (http://www.knet.
bosai.go.jp/ and http://www.kik.bosai.go.jp/). The stations
with epicentral distance less than 100 km are used for this
analysis.

Data Processing

We processed the accelerograms obtained from the nine
earthquakes according to the following method. A bias is re-
moved from the accelerograms by subtracting the preevent
mean. Because a small bias has a large effect when the record
is integrated, this process is applied to all accelerograms.

The peak amplitudes of the horizontal components are
calculated by the square root of the sum of the squares of the
peaks of north–south and east–west components. If one of
the horizontal components (north–south or east–west) of a
station has been clipped or is not well recorded, the square
root of twice the other well-recorded horizontal component is
used for the peak amplitude of the horizontal component.

The peak amplitude of the up-down component is used
directly for the peak vertical component. The station records
that have defects in the vertical component are excluded.

The following processes are completed for all the data.

• Jerk: The three-component accelerograms are differen-
tiated in the time domain, using a simple finite-difference
approximation. The peak value of each component is
selected.

• Acceleration: Original accelerograms are used to select the
peak value.

• Velocity: Some velocity records have a linear trend due
either to tilting, the response of the transducer to strong
shaking, or to problems in the analog-to-digital converter.
The baseline correction scheme applied to obtain appro-
priate velocity records is as follows (Iwan et al., 1985;
Boore, 2001): (1) Determine the straight line to be sub-
tracted from the velocity trace. The line is given by the
equation vf�t� � a1t� a2, where coefficients a1 and a2
are determined by least-squares fitting to the velocity trace
after the strong shaking. The segment of the record used for
least-squares fitting is from t1 to t2 (see Fig. 1). t1 is the
time when the strong shaking has subsided. The results of
baseline correction are not very sensitive to the choice of t1
(Boore, 2001). The second cutoff time, t2, is generally cho-
sen as the end of the record. (2) Remove this linear trend
from the velocity record. The initial time to subtract the
linear trend is determined as the intersection between
the linear trend and the x axis.

This baseline correction scheme assumes the baseline shift of
the acceleration occurs only once. There may be records
that have more than one baseline shift during strong shak-
ing. However, our purpose is to get the peak value of each
velocity record, and this does not require accurate integra-
tion of the entire record. After time-domain integration, the

distortion is not very large in the first portion of the record
where the peak value is generally recorded.

• Displacement: The corrected velocity records are inte-
grated once in the time domain and are high-pass filtered
using a fourth-order butterworth filter with a corner fre-
quency of 0.075 Hz.

The peak features used for the classification analysis
are shown in Table 2. Several combinations of these eight
features are tried to find the best performance of the
classification.

Data Classification

The classification as near source or far source in the
training set is based on rupture area models used for wave-
form inversions. These rupture area models are typically
determined from the aftershock distribution (Sekiguchi et al.,
1996), and the shape of the rupture area is approximated by a
rectangular box. Fault models used for classifying stations

Figure 1. An example of baseline correction for a velocity re-
cord from the Chi-Chi earthquake. The corrected velocity trend is
obtained by subtracting the linear trend from the original velocity
record. The portion of the record from t1 to t2 is used for least-
squares fitting to obtain the linear trend.

Table 2
Eight Measurements of Peak Ground Motions are

Calculated from Three-Component Accelerograms; Codes
and Units of the Components Used in

This Article are Shown

Code Measurement Unit

Hj Horizontal peak ground jerk cm=sec3

Zj Vertical peak ground jerk cm=sec3

Ha Horizontal peak ground acceleration cm=sec2

Za Vertical peak ground acceleration cm=sec2

Hv Horizontal peak ground velocity cm=sec
Zv Vertical peak ground velocity cm=sec
Hd Horizontal peak ground displacement cm
Zd Vertical peak ground displacement cm
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are shown in Table 1 and Figure 2. In Figure 2, black solid
lines indicate the surface projection of the fault rupture sur-
face based on the fault models. Stations within 10 km of this
fault projection (the white areas in the figures) are classified
as near source, indicated by solid circles. Far-source stations
are shown in open circles.

High-frequency near-source ground motions have long
been researched by engineers and seismologists. High-fre-
quency ground motions depend weakly on magnitude in
the near source (Hanks and Johnson, 1976; Hanks and
McGuire, 1981; Joyner and Boore, 1981). This helps to ana-
lyze ground motions with a wide range of magnitudes. Fig-

(a) Imperial Valley (1979)
(b) Loma Prieta (1989)

(c) Landers (1992)
(d) Northridge (1994)

Figure 2. Maps of the fault projections and station distributions. The fault projections are shown in the solid lines. The white areas around
the fault lines indicate the area with distance less than 10 km from the fault projections. The stations in this area are classified as near source
and are marked as solid circles. Far-source stations are shown as open circles. The star symbol denotes the epicenter of the earthquake.

(Continued)
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ure 3 shows horizontal and vertical PGA of near-source re-
cords in our training set as a function of moment magnitude.
The slope of a regression line would be almost equal to zero,
which is consistent with past studies. On the other hand, low-
frequency motion has a strong correlation with magnitude.
Figure 4 shows horizontal and vertical PGD as a function
of moment magnitude. The PGDs are log-proportional to
the magnitude. Based on such observations, we assume that
high-frequency motion does not depend on magnitude for

large earthquake and that accelerations do not exceed 2g,
whereas low-frequency motion is highly correlated with
magnitude, and its amplitude increases as the magnitude be-
comes large.

High-frequency ground motion decays in amplitude
more rapidly with distance than low-frequency motion
(Hanks and McGuire, 1981). Therefore, high-frequency mo-
tions (e.g., acceleration and jerk) have high correlations with
the fault distance. We compute the log of the ground-motion

(e) Hyogoken-Nanbu (1995) (f) Izmit (1999)

(g) Chi-Chi (1999)

(h) Denali (2002)

Figure 2. Continued.
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amplitudes and find the means and standard deviations for
the near-source and far-source records. Figure 5 shows the
histograms and Gaussian densities given by the sample
means and standard deviations for the near-source and far-
source records. The Gaussian densities are good approxima-
tions of the histograms of the log of the ground-motion data.
Figure 5 also shows that the distance between means for the
near-source and far-source datasets is larger in high-fre-
quency than low-frequency motions. Therefore, we expect
that the high-frequency motions is a good measure to classify
near-source and far-source records.

Near-Source Versus Far-Source
Discriminant Function

We assume the discriminant function to classify records
into near source and far source is expressed as a linear com-
bination of the log of ground-motion amplitudes:

f�Xijθ� � c1xi1 � c2xi2 � � � � � cmxim � d

�
Xm
k�1

ckxik � d � Xi · c � d; (1)

(i) Niigataken-Chietsu (2004)

Figure 2. Continued.
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Figure 3. Distribution of horizontal and vertical PGA for near-
source stations with respect to magnitude.
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Figure 4. Distribution of horizontal and vertical PGD for near-
source stations with respect to magnitude.
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where xik is the kth feature parameter of the ground
motion at the ith station, m is the number of feature
parameters, Xi � �xi1; xi2;…; xim� � �log10�component 1�;
log10�component 2�;…; log10�component m��, c1;…; cm is
the regression coefficients, d is the decision boundary con-
stant, and θ � �c1; c2;…; cm; d�T . We may use m compo-
nents out of the eight ground-motion components shown
in Table 2. The coefficients c1;…; cm, and d are determined
from the training dataset by two different approaches: Fish-
er’s linear discriminant analysis and Bayesian analysis.

This discriminant function is used to allocate new obser-
vations to one of the near-source or far-source groups, where
f�Xijθ� � 0 is the boundary between the two groups in the
feature parameter space. The station with observation Xi is
classified as near source if f�Xijθ� is positive. If f�Xijθ� is
negative, the station is classified as a far-source station. Note
that the decision boundary may also be expressed using
equation (1) as Xi · c � d.

Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis (LDA) is a method
to classify data by using a linear function (1) that best dis-
criminates two or more naturally occurring groups. LDAwas
first described by Fisher (1936) to separate two groups op-
timally. In general, LDA requires placing objects (e.g., hu-
mans) in predefined groups (e.g., Caucasoid, Mongoloid,
and Negroid) based on certain feature parameters (e.g., re-
lated to physical characteristics) and finding a function to
distinguish the groups. The parameters ck in the linear func-
tion (1) are selected to minimize the within-group variance
(variance of the samples centered on the group mean) and to
maximize the between-group variance (variance of the be-
tween-group means). The following is a brief discussion
about the procedure of linear discriminant analysis (Venables
and Ripley, 2002).

Consider n ×m data matrix X, where n is the number of
samples andm is the number of different features of samples.
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Figure 5. Histograms and Gaussian densities based on the sample means and standard deviations of the log of ground motions for the
near-source and far-source records. These are distributions for jerk, acceleration, velocity, and displacement from the top.
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Each sample is assigned to one of g groups Nj, j � 1;…; g,
with nj observations in each group. Let G denote the group
indicator matrix, which indicates the group each sample is
assigned to, and let M denote the group mean matrix. Then
the within-group covariance matrix W and between-group
covariance matrix B are

W � �X �GM�T�X �GM�
n � g

; (2)

B � �GM � 1μ�T�GM � 1μ�
g � 1

; (3)

where X � �xik� is the n ×m data matrix, G � �gij� is the
n × g group indicator matrix, M � �mjk� is the g ×m group
mean matrix, μ � �μ1;μ2;…;μm� is the 1 ×m mean
vector, 1 is the n × 1 column vector of 1s, xik is the kth
feature of the ith sample, gij � 1 if and only if
Xi � �xi1; xi2;…; xim� is assigned to group j,
mjk � �1=nj�

P
i∈Nj

xik, and μk � �1=n�Pn
i�1 xik. We

would like to find a linear combination X · c of the data such
that the different groups are maximally separated, that is,
maximizing the following separation ratio λ:

λ � cTBc

cTWc
� between-group variance

within-group variance
: (4)

A necessary condition to maximize λ is ∂λ=∂c � 0. By sub-
stituting equation (4) into this condition, we get

W�1Bc � λc; (5)

assumingW is invertible. This is an eigenvalue problem, and
the weight vector c and the separation ratio λ are eigenvec-
tors and eigenvalues of W�1B, respectively. X · c is called a
canonical variate, and the canonical variate of the eigenvec-
tor c that corresponds to the largest eigenvalue is called the
first canonical variate.

For the near-source versus far-source classification pro-
blem, the data matrix X is the dataset of peak seismic ground
motions, where n is the number of stations andm is the num-
ber of the object features (PGA, PGV, PGD, etc.). We have two
groups: the near-source group and the far-source group
(g � 2). LDA finds the optimal set of coefficients of ground-
motion amplitudes to classify near-source or far-source
records.

Because the traditional LDA does not treat which choice
of the ground-motion parameters is the best, Bayesian model
class selection is performed (the results are shown later). Ac-
cording to this analysis, the best selection is the combination
of Za (vertical acceleration) and Hv (horizontal velocity),
and their coefficients obtained from LDA are shown in
Table 3.

We choose the decision boundary constant d to maxi-
mize the classification performance for the set of coefficients
obtained by the LDA. The classification performance is eval-

uated by the following function:

Pc�d� � �P�f�Xijθ� ≥ 0jYi � 1�
� P�f�Xijθ�

< 0jYi � �1��=2; (6)

where

f�Xijθ� � Xi · c � d; Yi �
�
1 if near source;
�1 if far source:

This is the average probability between the probability that a
near-source station is classified correctly and the probability
that a far-source is classified correctly. The parameter d,
which maximizes this function for the given coefficients (Ta-
ble 3), is 25.903, and the performance defined by the preced-
ing function is 93.4%. Another way to compute d is to take
the midpoint of the two group means of the first canonical
variate. This method makes it easier to compute the value of
d, and it gives d � 25:045, a good approximation to
d � 25:903 that shows maximum performance.

As a conclusion, the discriminant function computed
from the LDA is

f�Xijθ� � 7:233 log10 Za� 6:813 log10 Hv � 15:903

if
�
f�Xijθ� ≥ 0 near source;
f�Xijθ� < 0 far source:

(7)

This discriminant function is applied to all the datasets,
and the values of f�Xijθ� are shown in Figure 6. The figure
shows that most of the near-source data lie on the right-hand
side of the decision boundary, which means the classification
performance is very good. Although a fraction of the far-
source records are misclassified, the misclassification of
far-source data is less critical than that of near-source data.

Bayesian Approach

In this section, a Bayesian approach is applied to deter-
mine the coefficients of the discriminant function that clas-
sifies near-source and far-source data (Sivia, 1996; Jaynes,
2003). The probability density function (PDF) of parameter

Table 3
Estimated Model Parameters by Fisher’s LDA, Bayesian Approach
with Asymptotic Approximation, and Bayesian Approach with

Metropolis Algorithm; the Standard Deviations for Each
Parameter Are Shown in Parentheses

Method c1 (Za) c2 (Hv) d

LDA 7.233 6.813 25.903
Bayesian–asymptotic 6.046 7.886 27.090
(σ) (	0:903) (	1:206) (	3:163)
Bayesian–Metropolis
algorithm

6.194 8.150 27.872

(σ) (	0:946) (	1:224) (	3:330)

Real-Time Estimation of Fault Rupture Extent Using Near-Source versus Far-Source Classification 1897



θ conditioned on data Dn and model class M can be ex-
pressed using Bayes’s theorem:

p�θjDn;M�posterior ∝ p�Dnjθ;M�likelihood
× p�θjM�prior ∝ ∏n

i�1

P�YijXi; θ� × p�θjM�; (8)

where θ � �c1; c2;…; cm; d�T is the parameter vector, Dn �
f�Xi; Yi�: i � 1;…; ng is the available set of data,
Xi � �xi1; xi2;…; xim� is the ground motion at the
station i and is equal to �log10�component 1�;
log10�component 2�;…; log10�component m��, Yi � 1 if
the classification is near source at the station i, Yi � �1
if the classification is far source at the station i,m is the num-
ber of object features, and n is the number of data. Note that
the model class M defines the likelihood for each value of θ
in some set of values and also the prior PDF p�θ�.

We determine the parameters c1;…; cm, and d based on
a Bayesian approach using the same notation as the LDA.
The goal of the Bayesian approach is to obtain the posterior
PDF of the model parameters (θ) and to determine the most
plausible value of θ by maximizing this PDF.

Choice of Prior Distribution

Assume that the model class M is globally identifiable
based onDn (Beck and Katafygiotis, 1998), that is, there is a
unique θmaximizing the likelihood p�Dnjθ;M�. In this case,
given a sufficiently large dataset Dn, the choice of prior PDF
does not affect the resulting posterior PDF, and all posteriors

with different priors will converge to the same answer (Sivia,
1996). Here, the prior is chosen to cover a wide range of the
parameter space by selecting the prior of each model para-
meter to be a Gaussian PDF with zero mean and standard
deviation σ � 100, so

p�θjM� � 1

�
������
2π

p
σ�m�1

exp
�
� 1

2σ2
θTθ

�

� 1

�
������
2π

p
σ�m�1

exp
�
� 1

2σ2

�Xm
k�1

c2k � d2
��

: (9)

Choice of Likelihood Function

Let the predictive probability that station i is near source
be P�Yi � 1jXi; θ�. The predictive probability that a station
is far source is then P�Yi � �1jXi; θ� � 1 � P�Yi �
1jXi; θ�. A standard approach in Bayesian classification is
to define the predictive probability by applying the logistic
sigmoid function ϕ�x� � 1=�1� e�x� to the linear function
f�Xijθ� that is also used in the traditional LDA (Li et al.,
2002). The logistic sigmoid function is a smooth, positive,
and monotonically increasing function, as shown in Figure 7.
Although there are other sigmoid functions that have these
properties, the logistic sigmoid function is mathematically
convenient, and the class probability (shown in the Bayesian
model class selection) is robust to the choice of the sigmoid
function for the following reason. Notice from equation (1)
that the location of the separating boundary f�Xijθ� � 0 is
independent of a uniform scaling of the parameters. The
Bayesian updating automatically produces a scaling appro-
priate to the separation of the classes in the feature parameter

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Far−source Near−source

f(Xi|θ)

pd
f

near−source
far−source

Figure 6. Histogram of the near-source and far-source data to
which the discriminant function obtained from traditional LDA is
applied. The column heights are normalized by the number of
the data in each group. f�Xijθ� � 0 is the decision boundary be-
tween the two groups. The curves are the Gaussian distribution with
the same mean and standard deviation as the values of f�Xijθ� for
each group.
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Figure 7. A logistic sigmoid function ϕ�x� � 1=�1� e�x� is
used to express the predictive probability for classification. The
function approaches zero as x → �∞ and approaches one as
x → ∞. The function is 0.5 when x is zero.
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space that is implied by the data. If the data are well sepa-
rated, a large scale will be chosen so that there is a steep
transition in the class probability as the separating boundary
is crossed; on the other hand, if the data for the classes have
significant overlap in the feature parameter space, then a
smaller scale will be chosen to give a more gradual transition.

The predictive probability that the ith station is near
source is therefore defined here by

P�Yi � 1jXi; θ� � ϕ�f�Xijθ�� �
1

1� e�f�Xijθ� : (10)

As f�Xijθ� becomes larger, the station is more likely to be
near source, and the probability that the station is near source
becomes closer to one. Note that the predictive probability
that the station is far source is then

P�Yi � 1jXi; θ� � 1 � ϕ�f�Xijθ�� � ϕ��f�Xijθ��

� 1

1� ef�Xijθ� ; (11)

where from equation (1),

f�Xijθ� �
Xm
k�1

ckxik � d � Xi · c � d:

From equations (10) and (11), the likelihood function can be
expressed as

p�Dnjθ;M� � ∏n
i�1

P�YijXi; θ� � ∏n
i�1

ϕ�Yif�Xijθ��

� ∏n
i�1

1

1� e�Yif�Xijθ� : (12)

Posterior Distribution

By substituting equations (9) and (12) into equation (8),
the posterior can be expressed as

p�θjDn;M� ∝ 1

�
������
2π

p
σ�m�1

exp
�
� 1

2σ2
θTθ

�

× ∏n
i�1

1

1� e�Yif�Xijθ� : (13)

Both an asymptotic approximation and stochastic simu-
lation are performed to characterize the PDF defined by equa-
tion (13). In the asymptotic approach, the posterior is
represented by a Gaussian distribution for θ with mean θ̂,

the most probable value of θ, and a covariance matrix Σ̂ de-
fined later. Stochastic simulation uses the Metropolis algo-
rithm to generate random samples of the parameter vector
θ from the posterior PDF. It is noted that it is computationally
challenging to evaluate the proportionality constant in equa-
tion (13) that normalizes the posterior PDF because it
requires numerical integration over a high-dimensional para-
meter space. However, this evaluation can be avoided in both
the asymptotic approximation and stochastic simulation
methods.

Asymptotic Approximation

We first find the optimal value θ̂ of θ that maximizes the
posterior PDF. This multidimensional optimization problem
is solved by a numerical optimization algorithm provided
by Matlab.

Using Laplace’s method of asymptotic approximation,
Beck and Katafygiotis (1998) show that the posterior PDF
for a set of model parameters θ for a globally identifiable
model class M (which has a unique most probable value)
may be approximated accurately by a Gaussian distribution
with mean θ̂ and covariance matrix Σ̂, given a large amount
of data. Define H�θ� by

H�θ� � �∇∇ log�p�Dnjθ;M�p�θjM��

� �∇∇ log
�
∏n
i�1

P�YijXi; θ�p�θjM�
�
; (14)

then Σ̂ � H�θ̂��1. By substituting equations (9) and (12) into
equation (14),

�H�θ���α;β� �
�
�∇∇ log ∏n

i�1

P�YijXi; θ�

�∇∇ logp�θjM�
�
�α;β�

� � ∂2

∂cα∂cβ
�
log ∏n

i�1

ϕi

�
� 1

σ2
δαβ

� �
Xn
i�1

∂2

∂cα∂cβ �logϕi� �
1

σ2
δαβ

� �
Xn
i�1

∂
∂cβ

�
1

ϕi

ϕi�1 � ϕi�
∂�Yif�Xijθ��

∂cα
�

� 1

σ2
δαβ �

Xn
i�1

ϕi�1 � ϕi�xiαxiβ

� 1

σ2
δαβ; (15)

where ϕi � ϕ�Yif�Xijθ�� and equation (1), along with
Y2
i � 1, has been used. The optimal parameter values and

their standard deviations for the selection of features Za
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and Hv are shown in Table 3. Note that for large σ, the effect
of the prior in equation (15) is negligible.

In order to examine the sensitivity of the Bayesian ap-
proach to the training dataset, we perform a cross-validation
analysis. First, the training dataset is randomly divided into
two datasets, and the discriminant function is constructed
from one dataset (training set). This discriminant function
is applied to the other dataset (validation set) to check its
classification performance. We then switch the testing set
and validation set and repeat this cross-validation analysis.
We set the near-source/far-source boundary so that the prob-
ability is 1=2 that the station is near source, that is, the station
is classified as near source if the probability that it is near
source is more than 1=2. The confusion matrices of these
two analyses and the previous analysis that uses all of the
dataset are shown in Table 4. The classification error with
half of the dataset is as small as that of the analysis that uses
all of the dataset. Therefore, we confirm that the sensitivity to
the training dataset is small, giving more confidence that the
discriminant function from Bayesian analysis will perform
well for future earthquake data.

Stochastic Simulation using Metropolis Algorithm

The asymptotic approximation is valid only if the pos-
terior PDF for the model parameters can be approximated
well with a Gaussian distribution. This requires a large sam-
ple size and that the class of modelsM is globally identifiable
based on data Dn (Beck and Katafygiotis, 1998). On the
other hand, a stochastic simulation algorithm can be applied
to the problem that generates samples from a Markov chain,
whose stationary PDF is the posterior PDF, that is, the sam-
ples are asymptotically distributed according to the posterior
PDF for the parameters. The Metropolis algorithm is used to
solve this high-dimensional problem, because it does not re-
quire evaluation of the normalizing constant for sampling the
posterior PDF in equation (13).

The Metropolis algorithm is a Markov chain Monte Car-
lo (MCMC) method proposed by Metropolis et al. (1953). It
is a simulation technique for generating random samples
from any given probability distribution. The algorithm uses

a proposal PDFQ that depends on the current sample of para-
meters, θ�t� at the tth iteration (MacKay, 1998). Here, we
choose as the proposal density a Gaussian PDF centered
on the current parameters θ�t� with the covariance matrix
Σ of the parameters in the asymptotic approximation. The
optimal parameters estimated from direct optimization of
the posterior PDF are used as an initial θ�t�. The expression
for Q is

Q�θ0jθ�t�� � 1

�2π�m0=2jΣj1=2

× exp
�
� 1

2
�θ0 � θ�t��TΣ�1�θ0 � θ�t��

�
; (16)

where jΣj is the determinant of the covariance matrix and m0

is the dimension of the parameter θ, which is m� 1. A can-
didate sample is drawn from Q�θ0jθ�t��. The ratio of the pos-
terior PDF in equation (8) at the current sample θ�t� and the
candidate sample θ0 determines whether to accept the candi-
date sample, according to

r � p�θ0jDn;M�
p�θ�t�jDn;M� ; (17)

θ�t�1� �
�
θ0 with probability min�1; r�;
θ�t� with probability 1 �min�1; r�: (18)

If r ≥ 1, then the candidate is accepted as the next sample in
the Markov chain. Otherwise, the candidate is accepted with
probability r as follows: We generate a random number uni-
formly distributed between zero and one, and if it is less than
r, the candidate is accepted, that is, θ�t�1� � θ0. If it is not
accepted, the current sample is repeated (θ�t�1� � θ�t�). This
procedure is repeated until the desired number of samples are
generated. There is a burn-in period at the beginning of the
MCMC method until the probability distribution of the cur-
rent sample θ�t� is sufficiently close to the posterior PDF,
which is the stationary PDF of the Markov chain, so judg-
ment is used to discard initial samples.

Figure 8 shows 5000 parameter samples generated with
the Metropolis algorithm for the optimal selection of features
Za and Hv. This selection of the ground-motion features
comes from Bayesian model class selection explained later.
After discarding the samples in the burn-in period (taken as
the first 100 samples), the mean and standard deviation of the
samples are shown in Table 3. The average acceptance ratio
of the candidate samples θ0 is 44%, which indicates the meth-
od works well (Roberts et al., 1997). The stability of the sam-
ple mean and standard deviation of each parameter is
examined in Figure 9. The mean and standard deviation
of the samples converge after the first 1000 samples are
added. The most probable values of the parameters from
maximization of the posterior PDF are also shown in Figure 9.
Note that the means of the marginal PDFs and the most prob-

Table 4
The Confusion Matrix for the Cross-Validation Analysis with the

Bayesian Method with Asymptotic Approximation

Dataset Near Source/Far Source Near Source Far Source

All dataset Near source 78 (78%) 22 (22%)
Far source 12 (2%) 583 (98%)

Half of dataset Near source 39 (74%) 14 (26%)
Far source 4 (1%) 291 (99%)

Other half of dataset Near source 37 (79%) 10 (21%)
Far source 8 (3%) 292 (97%)

“All dataset” is the analysis that uses the whole dataset as a training set and
a validation set. “Half of dataset” is the analysis that uses half of the dataset
as a training set and the other half as a validation set. “Other half of dataset”
is the analysis that switches the training and validation set.
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able values of the joint posterior PDF need not agree if these
PDFs are skewed.

The distribution of sample values for parameters θ and
the resulting histogram of probability that a station is near
source calculated by the generated set of parameters are
shown in Figure 10. The distribution of parameter samples
agrees well with the Gaussian distribution defined by the op-
timal parameters and standard deviations given by the
asymptotic approximation. The standard deviations of c1
and c2 are similar to each other, and the distribution is peaked
close to the mean of the samples. The distribution of samples

for the decision boundary constant d has a standard deviation
almost three times as large as that of c1 and c2. However, in
terms of th coefficient of variation, the uncertainty in d is
smaller than that of other parameters (11.7% compared with
14.9% and 15.3% for c1 and c2, respectively).

Figure 11 shows the correlation of samples of model
parameters generated from the simulation. This is the result
of the model class with all parameters corresponding to the
eight ground-motion parameters, not the result of the optimal
model class. The figure shows that the parameter d is not
correlated significantly with any other parameter. The com-
binations of parameters that have significant interaction are
horizontal and vertical jerk (c1 and c2), horizontal and ver-
tical acceleration (c3 and c4), and horizontal and vertical dis-
placement (c7 and c8). Parameters with the same component
and similar frequency range (e.g., jerk and acceleration [c1
and c3, and c2 and c4], acceleration and velocity [c3 and c5,
and c4 and c6], and velocity and displacement [c5 and c7, and
c6 and c8]) are also strongly correlated. This result agrees
with our intuition: horizontal and vertical components of
the same quantity are correlated, and records with similar
frequency ranges have similar attenuation relationships
and so are correlated.

Comparison between Traditional LDA and the
Bayesian Approach

Parameters for the linear discriminant function
f�Xijθ� �

P
m
k�1 ckxik � d are estimated by traditional

LDA and by the Bayesian approach with two different tech-
niques to characterize the posterior PDF. The results are
shown in Table 3. The parameters for LDA are scaled such
that the norm of the vector c � �c1; c2� is equal to the norm of
the vector from the asymptotic approximation. Note that the
discriminant function f�Xijθ� is a linear function, so for the
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Figure 8. Samples generated by the Metropolis algorithm
plotted in the parameter space. The x axis denotes the sample num-
ber. The vertical dotted lines indicate the end of the burn-in period
(100 samples).
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estimated from optimization.
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Figure 10. Distribution of samples for three parameters gener-
ated by the Metropolis algorithm. The Gaussian distributions ob-
tained from the asymptotic approximation are added in the
figure and fit the histogram well.
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traditional LDA, multiplying all ck and d by an arbitrary po-
sitive constant does not change the result of classification.
However, this is not true for the Bayesian approach, where
the modulus of f�Xijθ� affects the probability that a station is
near source.

The estimated parameters are close for the three meth-
ods. The coefficients from LDA are within one standard de-
viation of those from both Bayesian methods, except that c1
from LDA is slightly over one standard deviation from the
corresponding mean and most probable values from the
Bayesian methods.

For the asymptotic approximation and Metropolis algo-
rithm, the estimates and standard deviations for the posterior
parameter distribution are very close. If the posterior is a
skewed PDF, the mean is not necessarily equal to the most
probable value (e.g., consider lognormal distribution), as
mentioned before. However, Figure 10 suggests that the pos-
terior PDF is almost symmetric, and the means of the samples

and the most probable values should show very good agree-
ment. In this case, the Gaussian distribution is a good ap-
proximation for the posterior PDF of the parameters.

By using the discriminant functions defined by the va-
lues of the parameters in Table 3, we performed a classifica-
tion analysis using the whole dataset. The classification
performance for the discriminant function from LDA and
two Bayesian approaches is shown in Table 5. The results
for LDA show 100% of near-source data and 86% of far-
source data are classified correctly, and the result of Bayesian
approach shows 78% of near-source data and 98% of far-
source data are classified correctly. This discriminant func-
tion is the function that has the smallest prediction error. To
obtain this function, the misclassification of near-source data
and that of far-source data are considered to be of equal im-
portance. Generally speaking, the misclassification of near-
source data is more critical than that of far-source data, and
we may want to decrease the misclassification rate of near-
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Figure 11. Correlation plot of posterior samples of the model parameters generated by the Metropolis algorithm. The most probable
values of the parameters are shown as crosses (×). The numbers in the figure are the correlation coefficients of the parameters.
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source data. This misclassification rate can be easily con-
trolled by changing the decision boundary constant d. We
also can control this by shifting the near-source/far-source
boundary in the Bayesian approach to correspond to some
other probability than the half used in this classification
analysis.

We performed the leave-one-out cross validation to
compare the misclassification rate between LDA and the
Bayesian method with asymptotic approximation. The idea
of this method is to predict the probability of a station from
the discriminant function constructed from the dataset from
which that station is excluded. This process is repeated for all
695 data, and the accuracy of prediction is computed. The
percentage of misclassified data is shown in Table 6. It shows
the prediction error of the Bayesian approach is much smal-
ler than that of LDA. In other words, the Bayesian approach
is able to construct a more robust discriminant function.
Therefore, we use the discriminant function obtained from
the Bayesian method with asymptotic approximation for
further analysis.

Bayesian Model Class Selection

Method

Bayesian model class selection determines which com-
bination of the eight ground-motion parameters gives the
best classification for the near source and far source. The es-
sential idea is to find the most probable model class based on
data Dn within a set of candidate model classes Mj,
j � 1;…; J (Gull, 1988; Beck and Yuen, 2004). Applying
Bayes’s theorem, the probability of model class Mj can
be expressed as follows:

P�MjjDn;M� � p�DnjMj�evidenceP�MjjM�prior
p�DnjM�normalizing constant

; (19)

where M � fM1;M2;…;MJg is a set of candidate model
classes and J is the number of model classes. The left-hand
side of equation (19) is the probability of a particular model
class Mj given the dataset and a set of candidate model
classes. On the right-hand side, p�DnjMj� is the evidence
for each model class, P�MjjM� is the prior over the candidate
model classes evaluated for Mj, and p�DnjM� is a normal-
izing constant given by

a�DnjM� �
XJ
j�1

p�DnjMj�P�MjjM�: (20)

Assuming a uniform prior for the model class, P�MjjM� in
the numerator and denominator of equation (19) cancel. By
the total probability theorem, the evidence for Mj provided
by the dataset Dn is given as

p�DnjMj� �
Z
θj

p�Dnjθj;Mj�p�θjjMj�dθj: (21)

This is simply the integral of the likelihood of the data for a
vector of parameters weighted by its prior probability inte-
grated over the whole parameter set for θj for model
class Mj.

An asymptotic approximation for large sample sizes n
can be used to compute the evidence of the model (Papadi-
mitriou et al., 1997):

p�DnjMj�≈ 2πNj=2p�θ̂jjMj�
�

�����������������
jHj�θ̂j�j

q
�Ockham factor

× p�Dnjθ̂j;Mj�likelihood; (22)

where Hj�θj� � �∇∇ log�p�Dnjθj;Mj�P�θjjMj��, θ̂j is the
optimal parameter vector (most probable value) for model
classMj, and Nj is the number of parameters for model class
Mj. Here, Hj�θj� is given by equation (15) for the choice of
parameters θj corresponding to model class Mj. p�θ̂jjMj� is

Table 5
The Confusion Matrix for Near-Source versus Far-Source Classification
by the Discriminant Function Obtained from LDA, from the Bayesian

Approach with Asymptotic Approximation, and from the
Bayesian Approach with Metropolis Algorithm

Dataset Near Source/Far Source Near Source Far Source

LDA Near source 100 (100%) 0 (0%)
Far source 82 (14%) 513 (86%)

Bayesian–assymptotic Near source 78 (78%) 22 (22%)
Far source 12 (2%) 583 (98%)

Bayesian–Metropolis algorithm Near source 78 (78%) 22 (22%)
Far source 12 (2%) 583 (98%)

Table 6
Results of Leave-One-Out Cross-Validation for

LDA and the Bayesian Approach

Method Prediction Error

LDA 82/695 (12%)

Bayesian approach 36/695 (5%)
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the prior defined in equation (9), and p�Dnjθ̂j;Mj� is the
likelihood function defined in equation (12), evaluated at
the optimal parameter vector for model class Mj. For the
model class selection results, the effect of the standard de-
viation of the Gaussian prior on the choice of most probable
model class is examined later.

Results of Bayesian Model Class Selection

We used Bayesian model class selection to find the best
combination of the eight ground-motion parameters with the
same dataset as the previous classification problem. First, we
impose the condition that both horizontal and vertical com-
ponents be included in the model for any selected ground-
motion quantity. Under this condition, there are four groups
of ground-motion parameters (peak jerk, acceleration, velo-
city, and filtered displacement) giving 15 possible com-
binations. These 15 candidate model classes are shown in
Table 7.

The results in Table 7 indicate that the combination of
acceleration and velocity is the model with highest probabil-
ity, although the jerk and velocity combination also has sig-
nificant probability. The log of prior (p�θ̂jjMj�) is simply a
function of Nj and becomes smaller as the number of para-

meters increases. The factor p�θ̂jjMj��2πNj=2�=
�����������������
jHj�θ̂j�j

q
in

equation (22) is called the Ockham factor by Gull (Gull,
1988; Beck and Yuen, 2004). It penalizes a more compli-
cated model and so makes a simpler model preferable.
The Ockham factor is also shown in Table 7. Although

the coefficient 2πNj=2 and
�����������������
jHj�θ̂j�j

q
are included in the

Ockham factor, the effect of prior p�θ̂jjMj� is dominant.
The log of the likelihood function p�Dnjθ̂j;Mj� be-

comes larger as the number of the parameters in the model

class increases because a more complicated model class will
fit the data better than a less complicated one. However, the
Bayesian model class selection automatically accounts for
the trade-off between the complexity of the model (e.g.,
the number of parameters) and the fit of the data to find a
well-balanced model (Beck and Yuen, 2004). A useful infor-
mation-theoretic interpretation of this trade-off is given in
Muto and Beck (2007).

To examine the possible model classes further, the con-
straint that horizontal and vertical components be used to-
gether is removed. We test all 255 model classes created
from the combinations of eight parameters. The results for
the best five model classes are shown in Table 8. The
sum of the posterior probability of the five model classes
is 95% out of all 255 model classes.

Model class 1, which has the coefficients of the vertical
acceleration and horizontal velocity, is the most probable
model within the set of 255 model classes. The discriminant
function for the most probable model in model class 1 is

f�Xijθ� � 6:046 log10 Za� 7:885 log10 Hv � 27:091;

(23)

where

P�Yi � 1jXi; θ� �
1

1� e�f�Xijθ� (24)

is the probability that station i is near source. This result in-
dicates that the amplitude of high-frequency components is
effective in classifying near-source and far-source stations.
Note that the probability that the station is near source is
higher, if f is larger.

Table 7
Results for Bayesian Model Class Selection when 15 Combinations of the Ground-Motion Parameters Are Examined Under the

Condition That the Horizontal and Vertical Components Are Used Together

Model Hj Zj Ha Za Hv Zv Hd Zd d Ockham Factor Likelihood Evidence Probability

j 1.53 4.30 — — — — — — 23.84 �17 �140 �156 0.00
a — — 4.38 4.37 — — — — 21.43 �16 �117 �133 0.00
v — — — — 8.57 0.87 — — 16.33 �16 �118 �134 0.00
d — — — — — — 2.49 1.44 5.76 �17 �192 �209 0.00
ja �2:74 2.04 6.60 2.95 — — — — 20.82 �25 �114 �139 0.00
jv 2.57 2.79 — — 7.00 2.00 — — 36.09 �25 �80 �105 0.32
jd 3.44 3.43 — — — — 3.48 0.79 33.17 �26 �94 �120 0.00
av — — 2.54 4.38 7.01 0.91 — — 29.47 �24 �80 �104 0.62
ad — — 4.93 5.02 — — 3.89 0.22 29.40 �25 �82 �106 0.05
vd — — — — 12.55 2.30 �3:38 �0:25 19.99 �25 �106 �131 0.00
jav 1.36 1.47 1.36 2.28 6.93 1.50 — — 33.75 �33 �78 �111 0.00
jad 0.55 0.43 4.35 4.49 — — 3.89 0.27 30.72 �33 �81 �115 0.00
jvd 2.72 2.68 — — 6.66 2.91 0.66 �1:12 36.66 �34 �80 �113 0.00
avd — — 3.47 4.50 4.58 1.06 1.80 �0:47 30.16 �33 �79 �112 0.00
javd 1.40 1.29 2.05 2.49 5.05 2.11 1.69 �1:02 34.31 �41 �78 �119 0.00

The most probable value of the decision boundary parameter corresponding to each ground-motion parameter is given first for each model
class. The values for the Ockham factor, likelihood, and evidence of each model class are log-scaled. The last column is the posterior probability
that measures how plausible the model class is. It is scaled such that the total probability of the 15 model classes is 1.0.
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Effect of the Choice of Prior

In this section, we examine the choice of prior for the
parameters in the model class selection. As we stated, for the
Gaussian prior distribution, the effect of the number of para-
meters, Nj, is significant if the prior standard deviation, σ, is
large. We demonstrate this feature by performing model class
selection with a Gaussian prior with different values of σ and
a uniform prior with different widths of boundary b. The pos-
terior probabilities of the model classes are shown in Table 9.

In the table, we can see the effect of the prior standard
deviation in the Gaussian prior. As we increase σ, it tends to
bias the posterior probability towards simpler models (i.e.,
models with less parameters). For example, the probability
of model jav slightly decreases as σ increases. The small
probability of model jv with Gaussian prior (σ � 10) is
caused by the narrow prior range. If σ is too small, it restricts
the range of parameters as shown in Table 10. Also, for the
uniform prior case the results are very similar to the Gaussian
prior with σ � 100. Based on these results, we judge that the
choice of σ � 100 for the Gaussian prior is a reasonable

one for Bayesian model class selection in our classification
application.

Results and Discussion

We apply the optimal discriminant function from the
Bayesian approach (in equations 23 and 24) to all the stations
in the dataset. Figure 12 shows the classification results. The
distribution of stations with a high probability of being in the
near source is consistent with the fault geometry. As men-
tioned before, the fault models that are used here are those
from the source inversion, and they are not necessarily the
best indicator of near-source and far-source stations.

To examine the application for real-time analysis, the
optimal discriminant function in equations (23) and (24)
is applied to the Chi-Chi earthquake strong-motion records.
We generated snapshots of the probability that a station is
near source from 10 to 40 sec after the beginning of rupture.
Peak ground motions used for this classification analysis are
computed from the observed data every 10 sec for each sta-
tion and evaluated in the discriminant function. The results
are shown in Figure 13. A darker mark at a station in Fig-
ure 13 indicates that the station is more likely to be near
source, and a lighter mark indicates that the station is more
likely to be far source.

Ten seconds after the rupture initiation, the map shows
that stations with a high probability of being in the near
source are located near the epicenter, and it indicates that
the rupture area is propagating concentrically. At 20 sec,
the probability of being in the near source at 13 stations
is computed to be greater than 50%, but the concentric sta-
tion distribution makes it difficult to identify any directivity
of rupture propagation. The average slip velocity is 2 km=sec

Table 8
The Best Five Model Classes in the Bayesian Model Class Selection when 255 Combinations of

the Ground-Motion Parameters Are Examined

Model Hj Zj Ha Za Hv Zv Hd Zd d Ockham Factor Likelihood Evidence Probability

1 — — — 6.05 7.89 — — — 27.09 �15 �81 �96 0.81
2 1.91 — — 4.41 8.31 — — — 31.92 �20 �79 �99 0.07
3 — — 1.86 4.88 7.86 — — — 29.17 �20 �80 �100 0.03
4 — 1.59 — 4.31 8.02 — — — 29.71 �20 �80 �100 0.03
5 — 4.43 — — 8.52 — — — 32.22 �16 �84 �100 0.02

The columns are in the same format as in Table 7.

Table 9
The Posterior Probability of the Model Class

Selection with Different Types of Prior
Distribution for Parameters

Model
Gaussian Prior Uniform Prior

σ � 10 σ � 100 σ � 1000 jbj < 20 jbj < 100

j 0.0 0.0 0.0 0.0 0.0
a 0.0 0.0 0.0 0.0 0.0
v 0.0 0.0 0.0 0.0 0.0
d 0.0 0.0 0.0 0.0 0.0
ja 0.0 0.0 0.0 0.0 0.0
jv 7.2 32.4 33.0 31.5 32.9
jd 0.0 0.0 0.0 0.0 0.0
av 78.9 62.1 61.7 59.0 61.6
ad 7.3 5.3 5.3 5.0 5.3
vd 0.0 0.0 0.0 0.0 0.0
jav 3.3 0.1 0.0 3.0 0.1
jad 0.1 0.0 0.0 0.0 0.0
jvd 0.1 0.0 0.0 0.3 0.0
avd 3.0 0.0 0.0 1.1 0.0
javd 0.1 0.0 0.0 0.0 0.0

σ is the standard deviation for the Gaussian distribution, and
jbj is the width of the boundary for the uniform distribution.

Table 10
The Estimated Parameters from Bayesian

Approach with Different Types of Prior Distribution
for Parameters

Prior c1 (Za) c2 (Hv) d

Gaussian (σ � 10) 5.522 7.147 24.686
Gaussian (σ � 100) 6.046 7.885 27.091
Gaussian (σ � 1000) 6.053 7.895 27.122
Uniform cases 6.053 7.895 27.122
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(Ji et al., 2003), and the rupture front propagates 40 km from
the hypocenter at this point. We can see the north–south char-
acter of the rupture direction clearly after 30 sec of rupture.
At 40 sec, the distribution of stations with high near-source
probability agrees with the fault surface projection, and sta-
tions at the near source and far source boundary have around
50% probability. Even though the fault geometries used for

the wave inversion are not necessarily the actual extent of the
fault, to a first-order approximation, the classification results
are in good agreement with them. The near-source region at
the north of the main rupture is a secondary rupture at the
Shihtan fault, which is suggested by Shin and Teng
(2001). This event may not be clear in the low-frequency
ground motions, so it is not considered in the waveform in-

Figure 12. Probabilities of near source based on the optimal discriminant function obtained by the Bayesian approach. Darker marks
have higher probability that the station is located at near source. All stations in the figures use the same color code for scale. The symbols for
the fault and epicenter are the same as in Figure 2. (Continued)
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version. However, the accelerograms at that region are
clearly larger than those of neighboring region, and the clas-
sification results detected this secondary rupture.

Conclusions

We presented a methodology to classify seismic records
into near-source or far-source records as a prelude to estimat-
ing fault dimensions in an earthquake early warning system.

Ground-motion records from some past earthquakes are ana-
lyzed to find a linear function that best discriminates near-
source and far-source records. Peak values of jerk, accelera-
tion, velocity, and displacement are used in a traditional LDA
and in a Bayesian approach to find the linear combination of
peak values that provides the best performance to classify
near-source and far-source records. All methods gave similar
discriminant functions. We also analyzed which combination
of ground-motion features had the best performance for clas-

Figure 12. Continued.
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Figure 12. Continued.

Figure 13. Snapshots of the probabilities of near source for the Chi-Chi earthquake, based on the optimal discriminant function from the
Bayesian approach. The large circle is the theoretical rupture front assuming the rupture velocity 2 km=sec. (Continued)
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sification using Bayesian model class selection, and the best
discriminant function is

f�Xijθ� � 6:046 log10 Za� 7:885 log10 Hv � 27:091;

(25)

P�Yi � 1jXi; θ�
1

1� e�f�Xijθ� ; (26)

where Za and Hv denote the peak values of the vertical
acceleration and horizontal velocity, respectively, and
P�Yi � 1jXi; θ� is the probability that a station is near
source. This function indicates that the amplitude of high-
frequency components is effective in classifying near-source
and far-source stations.

The probability that a station is near source obtained
using this optimal discriminant function for all the earth-
quakes shows the extent of the near source area quite well,
suggesting that the approach provides a good indicator of
near-source and far-source stations for real-time analyses.
Note that this function is constructed by the training dataset
with a magnitude greater than 6.5, so it works only for large
earthquakes.
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